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複数の連続した道路舗装区間の補修を検討する場合，近接する複数の舗装区間を単一の規制にお
いて補修すること（補修同期化）の便益（規模の経済性）を考慮することが望ましい．その際，現実
的な規模の道路舗装区間で劣化を考慮しながら最適規制・補修区間の厳密解を求めることは，計算負
荷が膨大となることから現実的でない．そこで，本研究では，簡便的ルールによる道路舗装区間の規
制・補修区間決定手法を提案する．数値計算事例を通じて，i）小規模な道路舗装区間において提案
手法により厳密解に近い解が得られること，ii）提案手法は厳密解の計算が不可能な大規模な道路舗
装区間にも適用できること，を実証的に示す．
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1. Introduction
To determine pavement sections to repair and work zone

locations on a corridor system consisting of multiple adja-
cent road sections, we should consider the benefits of syn-
chronized repairs on neighboring sections within a single
work zone to produce economies of scale. For example in
Fig. 1, Case A requires two units fixed repair/work zone
cost for two work zones while Case B requires only one for
the continuous work zone. Lethan et al.1) have developed a
method to determine the optimal work zone for large-scale
networks at a single time point, but in view of long-term
management of pavement system, it is desirable to con-
sider the stochastic pavement deterioration process.

Exact optimal repair and work zone policies considering
deterioration process is computationally intractable to find
because the solution space of optimal repair and work zone
policies for a real-scale road pavement system might be
too large. In this study, a method to find close-to-optimal
repair and work zone policies by a time-consistent simpli-
fied rule is proposed. Case study shows that the proposed
method can find close-to-optimal policies for small-scale
road pavement systems and might also be applied to real-
scale road pavement systems where the optimal solution
requires too much computational time to find.

2. Road pavement system model
(1) Deterioration and repair of system

A pavement system is composed of N linearly con-
nected, continuous and homogeneous pavement sections
with section IDs {1,2, · · · ,N}. T is the total number of
inspections planned to conduct along the finite planning
horizon. The time point t indicates tth inspection timing,
where interval of any two neighboring inspection timing is
d. Condition state (CS) of pavement is classified into M
discrete ratings. 1 is the best condition state and M is the
worst condition. s−n (t) is condition state of section n at t
before repair and s−(t) ≡ [s−n (t)] is the CS vector indicates
inspected state of the entire system. s+n (t) is condition state
of section n at t after repair and s+(t) ≡ [s+n (t)] is the CS
vector indicates state of the entire system after repair. The

Fig. 1 Economies of scale in repair

state space of the condition state vector can be expressed
as s ∈ S =MN .

Deterioration procedure of the entire system is modeled
as a Markov process. The Markov transition probability is
expressed as Ps∗,s∗∗ = Prob[s−(t) = s∗∗|s+(t − 1) = s∗].

Repair process can be conducted after every inspection
but work zone is needed to conduct repair for a pavement
section. Two binary decision variables δt,n ∈ {0,1} and
ξt,n ∈ {0,1} are defined to indicate the repair policy and
work zone policy for section n at t: Section n is repaired
when δt,n = 1 and not repaired when δt,n = 0; Section n is
in work zone when ξt,n = 1 and not in work zone when
ξt,n = 0. A repair and work zone policy for system can be
defined as δt ≡ [δt,n] and ξt ≡ [ξt,n]. Sections with worst
conditions (i.e. s = M) must be repaired, which means
δt,n = 1 if s−n (t) = M. Sections to repair must be selected
as work zone, which means δt,n ≤ ξt,n. 　

(2) Determination of repair and work zone policies

Objective of the management is to minimize the life cy-
cle cost (LCC) which comprised of the three cost factors:

• Variable repair cost: α
∑N

n=1 δt,n
• Variable work zone cost: β

∑N
n=1 ξt,n

• Fixed repair/work zone cost: γqt(ξt)

, where qt(ξt) is number of continuous work zones at t
and is a function of ξt. The expected discounted value of
the future life cycle cost of the road pavement system at t,
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Ψt(δt,ξt |s−(t)), can be described as:
Ψt(δt,ξt |s−(t))

=α

N∑
n=1

δt,n + β

N∑
n=1

ξt,n + γqt(ξt)

+
1

(1+ ρ)d

∑
s−(t+1)∈S

Ps+(t),s−(t+1)Ψt+1(δt+1,ξt+1|s−(t + 1))

(1)
, where ρ is a discount rate.

The optimal repair and work zone policies at t with
given s−(t), (δ∗t (s−(t)),ξ∗t (s−(t))), can be found by the fol-
lowing Bellman equation:

Vt(s−(t))

=α

N∑
n=1

δt,n + β

N∑
n=1

ξt,n + γqt(ξt)

+
1

(1+ ρ)d

∑
s−(t+1)∈S

Ps+(t),s−(t+1)Vt+1(s−(t + 1)) (2)

, where Vt(s−(t)) is the optimal value function of
Ψt(δt,ξt |s−(t)), defined as Ψt(δ∗t (s−(t)), ξ∗t (s−(t))|s−(t)).
This is a typical Markov decision process (MDP)2). The
entire optimal repair and work zone policy becomes a set
of T MN policies. As a result, the state space of the repair
policy becomes exponentially large as scale of the problem
becomes large. When number of sections in the system N
is relatively small, optimal repair and work zone policies.
can be found by backward recursion2), but when N is large
as real scale, it is intractable to calculate optimal policies.

To overcome the combinatorial explosion in the opti-
mization problem to determine repair and work zone poli-
cies, we propose a method to use a time-consistent simpli-
fied rule:
“ A primary section and secondary sections nearby
should be repaired in a single work zone. The pri-
mary sections are defined as the sections with condi-
tion state (CS) above the primary risk control level X
at an inspection timing. The secondary sections are
defined as the sections with CS between the primary
risk control level X and the second risk control level Y ,
which are located within the search distance Z near a
certain detected primary section at the inspection tim-
ing. The elongation of a work zone including a primary
section is automatically defined based on the identified
secondary sections nearby. ”
Based on the rule, δt,n and ξt,n are uniquely determined
with given (X,Y,Z) and s−(t), and they are denoted by
δt,n(s−(t),X,Y,Z) and ξt,n(s−(t),X,Y,Z). The optimal sim-
plified rule (X∗,Y∗,Z∗) can be given by:

(X∗,Y∗,Z∗)

= arg min
(X,Y,Z)∈X×Y×Z

T∑
t=1

1
(1+ ρ)(t−1)d Es−(t)

[
α

N∑
n=1

δt,n(s−(t),X,Y,Z)

+β

N∑
n=1

ξt,n(s−(t),X,Y,Z)+ γqt(ξt(s−(t),X,Y,Z))
]

(3)

, where the symbol “×” indicates the Cartesian product,
and Es−(t)[·] stands for the expected value of the input with
respect to the random vectors s−(t). As X, Y and Z are in-
dependent of t, the value of the objective function in Equa-
tion (3) can be calculated with a given set of X, Y , and Z
using the Monte Carlo simulation by generating CSs ran-
domly. Also, the cardinality of possible simplified rules

Table. 1 Case study in small-scale system (N = 5)
Exact solution Proposed method

Computational time 7488 seconds 46 seconds
Expected life cycle cost 92.40 [m.u.] 94.00 [m.u.]

Repair and work zone policy Indescribable X∗ = 4,Y∗ = 3,Z∗ = 3

Table. 2 Case study in large-scale system (N = 100)
Exact solution for every subsystem Proposed method

Computational time 7488 seconds 447 seconds
Expected life cycle cost 1847.97 [m.u.] 1785.90 [m.u.]

Repair and work zone policy Indescribable X∗ = 4,Y∗ = 3,Z∗ = 3

Fig. 2 Sensitivity analysis
is M(M − 1)L/2, which enables us to find the optimal so-
lution by calculating the values of the objective function
for all possible sets of X, Y , and Z. Compared to T MN

of the exact solution, the proposed rule-based method can
significantly reduce the complexity to M(M − 1)L/2.

3. Numerical study
In terms of small-scale pavement system (N = 5), where

the optimal policy can be found, the proposed method can
find a close-to-optimal policy as in Table. 1.

In terms of large-scale pavement system (N = 100), the
proposed method can find a policy with less LCC than that
to apply the optimal policy for small-scale system (N = 5)
to divided subsystems of the entire system as in Table. 2.

Sensitivity analysis of (X∗,Y∗,Z∗) about costs is con-
ducted by changing unit variable repair cost α and fixed
repair/work zone cost γ and result is shown in Fig. 2. Two
graphs are cases of different deterioration processes and it
is shown that a close-to-optimal policy differs according to
the condition (i.e. unit cost and deterioration process) and
therefore it is necessary to find close-to-optimal repair and
work zone policies case by case.

4. Conclusion
This study proposed a method to find close-to-optimal

repair and work zone policies for road pavement systems
by optimizing a simplified rule. The proposed method can
be applied to determination of repair and work zone poli-
cies for large-scale road pavement systems where the op-
timal policy is computationally hard to find, and therefore
more precise life cycle cost assessment for road pavement
systems becomes possible. The proposed method might
also be applied to determination of repair policies for other
infrastructure systems with economies of scale.
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